Wombat posted this some time back, a comprehensive list of supplementation for hypers and hypos. Be a good link for you to read over, although the amount of supplementation recommended seems fairly insane to me.
http://curezone.com/forums/fm.asp?i=840039#i
http://www.iodinesource.com/ThyroidGland.asp#ThyroidMercury
Thyroid and Mercury
Organic mercury causes severe damage to both the endocrine and neural systems. Studies have documented that mercury causes hypothyroidism, damage of thyroid RNA, autoimmune thyroiditis (inflammation of the thyroid), and impairment of conversion of thyroid T4 hormone to the active T3 form. Large percentages of women have elevated levels of antithyroglobulin (anti-TG) or antithyroid peroxidase antibody (anti-TP). Slight imbalances of thyroid hormones in expectant mothers can cause permanent neuropsychiatric damage in the developing fetus. Hypothyroidism is a well-documented cause of mental retardation. Maternal hypothyroidism appears to play a role in at least 15% of children whose IQs are more than 1 standard deviation below the mean, millions of children. Studies have also established a clear association between the presence of thyroid antibodies and spontaneous abortions. Hypothyroidism is a risk factor in spontaneous abortions and infertility. In pregnant women who suffer from hypothyroidism, there is a four-time greater risk for miscarriage during the second trimester than in those who don't. Women with untreated thyroid deficiency are four-times more likely to have a child with a developmental disability and lower I.Q. Mercury blocks thyroid hormone production by occupying iodine-binding sites and inhibiting hormone action even when the measured thyroid levels appears to be in the proper range. There are several aspects of iodine deficiency and hypothyroidism-related effects on fetal and perinatal brain development that can be aggravated or otherwise affected by the presence of mercury. Mercury has the ability to reduce cerebellar brain weight through significant reductions in total cell population of the cerebellum. Reductions of total body weight at birth are related to maternal exposure to mercury. Lead and mercury also have a direct effect on neuronal development leading to learning deficits. These are the same type of birth defects produced by maternal iodine deficiency and hypothyroidism. Mercury can have a negative effect on both iodine and thyroid status. A pregnant woman with a mouthful of mercury amalgam fillings has a much greater chance of experiencing some degree of hypothyroidism and/or iodine deficiency during pregnancy than one without amalgam fillings. Both the pituitary and the thyroid display an affinity for accumulating mercury. The enzymatic effects of mercury intoxication can be overcome by the administration of the thyroid hormone thyroxine. Through a feedback loop, the pituitary releases thyrotropin-releasing hormone, which in effect tells the thyroid how much thyroxine hormone to release into the blood. Mercury first stimulates and then suppresses the thyroid function. Chronic intake of mercury for more than ninety days results in signs of mercury poisoning, together with decreased uptake of iodine and depression of thyroid hormonal secretion. The thyroid and hypothalamus regulate body temperature and many metabolic processes including enzymatic processes that, when inhibited, result in higher dental decay. Mercury damage thus commonly results in poor body temperature control, in addition to many problems caused by hormonal imbalances such as depression. Such hormonal secretions are affected at levels of mercury exposure much lower than the acute toxicity effects normally tested. Mercury also damages the blood brain barrier and facilitates penetration of the brain by other toxic metals and substances. Hypothyroidism is also a major factor in cardiovascular disease. The thyroid gland has four binding sites for iodine. When mercury attaches to one of these sites, the hormone activity is altered. There is a relationship between thyroid function and the nutritional status of folate, vitamin B12, and methionine. There is also a strong association between lowered zinc intake, lowered basal metabolic rate, lowered thyroid hormones and lowered protein utilization. Mercury affects the nutritional status of folate, vitamin B12, methionine, and zinc, as well as protein. The thyroid is one of the important glands influencing dental decay. There is a fluid flow from the pulp chamber, through the dentin, through the enamel and into the mouth in people who have no dental decay. Thyroid is part of the endocrine function that controls the direction of this fluid flow. Low thyroid hormone production allows this fluid flow to run in the opposite direction--from the mouth, into the enamel, dentin, and pulp chamber. This fluid brings bacteria and debris from the mouth with it, leading to dental decay. When the teeth are susceptible to decay, the whole body is susceptible to degenerative disease. The thyroid is involved with maintenance of proper body temperature. Most mercury toxic patients have lower than optimum body temperatures. The most toxic persons may have temperatures as low as 96.2. When the amalgam fillings are removed, there is a trend for the temperature to approach 98.6, sometimes within 24 hours of removing all of the amalgams. The thyroid gland is controlled by the pituitary gland. When the thyroid is influenced by mercury, there is a high incidence of unexplained depression and anxiety. A person may have adequate levels of T3 and T4 hormones, but if the hormones are contaminated, the person is functionally thyroid deficient. Thyroid imbalances cause chronic conditions such as clogged arteries and chronic heart failure. People who test hypothyroid usually have significantly higher homocysteine and cholesterol--documented risk factors in heart disease. Fifty percent of those also have high levels of homocysteine, and 90% are either hyperhomocystemic or hypercholesterolemic. The major regulator of adrenocortical growth and secretion activity is the pituitary hormone ACTH (adreno-cortico-tropic hormone). ACTH attaches to receptors on the surface of the adrenal cortical cell and activates an enzymatic action that ultimately produces cyclic adenosine monophosphate (cAMP). cAMP, in turn, serves as a co-factor in activating key enzymes in the adrenal cortex. The adrenal cortex is able to synthesize cholesterol and to also take it up from circulation. All steroid hormones produced by the adrenal glands are derived from cholesterol through a series of enzymatic actions, which are all stimulated initially by ACTH. Steroid biosynthesis involves the conversion of cholesterol to pregnenolone, which is then enzymatically transformed into the major biologically active corticosteroids. cAMP is produced from adenosine triphosphate (ATP) by the action of adenylate cyclase. Adenylate cyclase activity in the brain is inhibited by micromolar concentrations of lead, mercury, and cadmium. One of the key biochemical steps in the conversion of adrenal pregnenolone to cortisol and aldosterone involves an enzyme identified as 21-hydroxylase. Mercury causes a defect in adrenal steroid biosynthesis by inhibiting the activity of 21a-hydroxylase. The consequences of this inhibition include lowered plasma levels of corticosterone and elevated concentrations of progesterone and dehydroepiandrosterone (DHEA). DHEA is an adrenal male hormone. Because patients with 21-hydroxylase deficiencies are incapable of synthesizing cortisol with normal efficiency, there's a compensatory rise in ACTH leading to adrenal hyperplasia and excessive excretion of 17a-hydroxyprogesterone, which, without the enzyme 21-hydroxylase, cannot be converted to cortisol. The inhibition of the 21-hydroxylase system may be the mechanism behind the mercury-induced adrenal hyperplasia. Adrenal hyperplasia can stress the adrenal glands by their accelerated activity to produce steroids to the point that production begins to diminish and the glands will atrophy. The result is a subnormal production of corticosteroids. Both lead and mercury can precipitate pathophysiological changes along the hypothalamus-pituitary-adrenal and gonadal axis that may seriously affect reproductive function, organs, and tissues. Leukocyte production, distribution, and function are markedly altered by glucocorticosteroid administration. In Addison's disease (hypofunction of adrenal glands), neutrophilia occurs 4-6 hours after administration of a single dose of hydrocortisone, prednisone, or dexamethasone. Neutrophilia is an increase in the number of neutrophils in the blood. Neutrophils are also called polymorphonuclear leukocytes (PMNs). Mercury not only causes a suppression of adrenocorticosteroids that would normally have stimulated an increase of PMNs, but at the same time also affect the ability of existing PMNs to perform immunity by inhibiting a reaction that destroys foreign substances. Posterior Pituitary Gland
The pituitary gland controls many of the body's endocrine system functions and secretes hormones that control most bodily processes, including the immune system and reproductive systems. One study found mercury levels in the pituitary gland ranged from 6.3 to 77 ppb, while another found the mean levels to be 30 ppb, levels found to be neurotoxic (toxic to nerves) and cytotoxic (kills cells). Amalgam fillings, nickel and gold crowns are major factors in reducing pituitary function. The posterior pituitary hormone joins forces with the thyroid in influencing emotions. Posterior pituitary hormone is really two hormones, oxytocin and vasopressin. High blood pressure is related to the function of the posterior pituitary hormone vasopressin. It is a short trip for mercury vapor to leave a filling, and travel into the sinus, and then travel an inch through very porous, spongy tissues to the pituitary gland. Mercury is detected in the pituitary gland in less than a minute after placing amalgam in teeth of test animals. Suicide
Part of the reason for depression is related to mercury's effect of reducing the development of posterior pituitary hormone (oxytocin). Low levels of pituitary function are associated with depression and suicidal thoughts, and appear to be a major factor in suicide of teenagers and other vulnerable groups. As a profession, dentists rank highest in suicide. Autopsy studies in Sweden showed that the pituitary glands of dentists held 800 times more mercury than people who were not in dentistry. Suicidal thoughts are not limited to dental personnel though. Suicide is close to the number-one cause of death in teenagers. Braces increase the electrical and toxic load people are carrying if they have amalgam in their mouths. Amalgam can create suicidal tendencies by itself, but the addition of braces, nickel crowns, or even gold crowns evidently increases the exit rate of mercury, and the glands react--or actually stop reacting. Suicidal tendencies tend to disappear within a few days of supplemental oxytocin extract, along with dental metal removal. Menstrual cycle problems, also normalize and fertility increases and endometriosis symptoms subside. Frequent Urination
The center that controls the need to get up several times each night to urinate is the posterior pituitary gland. There is a certain amount of solid material that must be disposed of daily in the urine. If the concentration of these solids is high (yield a specific gravity of 1.022 to 1.025) then the proper volume of urine will be excreted in a day. Should the concentration be half that, or yielding a specific gravity of 1.012 for instance, then it will take double the amount of urine to rid yourself of the same amount of solid. In other words, the solids remain the same. If the concentration of the urine is reduced, the total volume of urine is increased substantially. This ability of the kidney is controlled by the posterior pituitary. Adrenal Glands
Mercury accumulates in the adrenal glands and disrupts adrenal gland function. During stress, the adrenal glands increase in size as a normal reaction in order to produce more steroids (hormones). Both physical and physiological stress will stimulate the adrenal glands. The outer shell of the adrenal gland is called the cortex, and the inner core of the gland is called the medulla. The cortex produces three types of steroids called glucocorticoids. Cortisone is a corticoid essential to life and functions to maintain stress reactions. Mineral corticoids, such as aldosterone, regulate the balance of blood electrolytes and also cause the kidneys to retain sodium and excrete potassium and hydrogen. Mineral corticoids are also involved in gluconeogenesis, which is the process whereby your body converts glycogen to glucose (blood sugar). Small amounts of corticoid sex hormones, both male and female, are also produced by the adrenal cortex. Two primary nutrients for the adrenal glands are pantothenic acid and vitamin C. A deficiency of pantothenic acid can lead to adrenal exhaustion (chronic fatigue) and ultimately to destruction of the adrenal glands. A deficiency of pantothenic acid also causes a progressive fall in the level of adrenal hormones produced. One of the largest tissue stores of vitamin C is the adrenals; it is exceeded only by the level of vitamin C in the pituitary. Physical and mental stress increase the excretion of adrenocorticotropic hormone (ACTH) from the pituitary, which is the hormone that tells the adrenals to increase their activity. The increased adrenal activity, in turn, depletes both vitamin C and pantothenic acid from the glands. Humans cannot produce vitamin C. They therefore attempt to replenish the needs of the adrenals by taking the vitamin from other storage locations in the body. If your overall ascorbate status is low, there may be an insufficient amount available to satisfy the needs of the adrenals. Under this condition, normal adrenal hormone response may become inadequate, leading to an inadequate immune function. Mercury builds up in the pituitary gland and depletes the adrenals of both pantothenic acid and vitamin C. Stress and the presence of mercury will have a very negative effect on the adrenal production of critical steroids. The ability of the adrenal gland to produce steroids is called steroidogenesis and is dependent upon reactions mediated by the enzyme cytochrome P-450. Cytochrome P-450 reacts with cholesterol to produce pregnenolone, which is then converted to progesterone. Cytochrome P-450 can then convert progesterone to deoxycorticosterone which is then converted to corticosterone or aldosterone by other enzymes in the adrenals. These adrenal functions are also affected by metal ions. Still today, the ADA and other governmental agencies tell us that the mercury in your mouth, or from vaccinations, is perfectly safe. Scientists say this is a ridiculous statement that is in violation of science and common sense. Perchlorates
Perchlorate, the explosive main ingredient of rocket and missile fuel, contaminates drinking water supplies, groundwater or soil in hundreds of locations in at least 43 states, according to Environmental Working Group's updated analysis of government data. EWG's analysis of the latest scientific studies, which show harmful health effects from minute doses, argues that a national standard for perchlorate in drinking water should be no higher than one-tenth the level the U.S. Environmental Protection Agency currrently recommends as safe. Perchlorate is a powerful thyroid toxin that can affect the thyroid's ability to take up the essential nutrient iodide and make thyroid hormones. Small disruptions in thyroid hormone levels during pregnancy can cause lowered IQ and larger disruptions cause mental retardation, loss of hearing and speech, or deficits in motor skills for infants and children. Health Risks of PBDEs
As highly flammable synthetic materials have replaced less-combustible natural materials in consumer products, chemical fire retardants have become ubiquitous in consumer products. Of the many different kinds of fire retardants, one of the most common is a class of bromine-based chemicals known as polybrominated diphenyl ethers, or PBDEs. A growing body of research in laboratory animals has linked PBDE exposure to an array of adverse health effects including thyroid hormone disruption, permanent learning and memory impairment, behavioral changes, hearing deficits, delayed puberty onset, fetal malformations and possibly cancer. Research also shows that exposure to brominated flame retardants in utero or infancy leads to much more significant harm than adult exposure, and at much lower levels. Today PBDEs are in thousands of products, in which they typically comprise 5 to 30 percent of product weight. During manufacturing, PBDEs are simply mixed in to the plastic or foam product, rather than chemically binding to the material as some other retardants do, making PBDEs more likely to leach out. PBDEs are the chemical cousins of PCBs, another family of persistent and bioaccumulative toxins that came to the attention of regulators only after millions of pounds had been released into the environment. Used primarily as electrical insulators, PCBs were found to be rapidly building up in people and animals before they were banned in 1977. Many of the known health effects of PBDEs are thought to stem from their ability to disrupt the body's thyroid hormone balance, by depressing levels of the T3 and T4 hormones important to metabolism. In adults, hypothyroidism can cause fatigue, depression, anxiety, unexplained weight gain, hair loss and low libido. This can lead to more serious problems if left untreated, but the consequences of depressed thyroid hormone levels on developing fetuses and infants can be devastating. One study, for instance, found that women whose levels of T4 measured in the lowest 10 percent of the population during the first trimester of pregnancy were more than 2.5 times as likely to have a child with an IQ of less than 85 (in the lowest 20 percent of the range of IQs) and five times as likely to have a child with an IQ of less than 70, meeting the diagnosis of "mild retardation." Even short-term exposures to commercial PBDE mixes or individual congeners can alter thyroid hormone levels in animals, and the effects are more profound in fetuses and offspring than in adults. These results aren't surprising, but are ominous as data in humans indicate that pregnancy itself stresses the thyroid, and developing fetuses and infants don't have the thyroid hormone reserves adults do to help buffer insults to the system. Most studies on thyroid hormone disruption by PBDEs have been very short--with exposures of 14 days or less. The real question is how low doses over the long term affect the body's thyroid hormone balance. The answer is important, because the entire U.S. population is exposed daily to low levels of PBDEs, and studies of other thyroid hormone disrupters have found that long-term exposures can cause more serious harm at lower levels of exposure. Although no direct link could be made, one study found higher rates of hypothyroidism among workers exposed to brominated flame retardants on the job. Just One Dose May Be Harmful
Experiments have shown that just one dose of PBDEs at a critical point in brain development can cause lasting harm. In two different studies a small dose--as little as 0.8 milligrams per kilogram of bodyweight per day (mg/kg-day)--given to 10-day-old mice caused "deranged spontaneous behavior," significant deficits in learning and memory and reduced ability to adapt to new environments, with these problems often becoming more pronounced with age. The few studies that have looked at changes in organ structure have found that semi-chronic PBDE exposure can cause thyroid hyperplasia and enlarged livers at relatively low doses (10 mg/kg-day) and other adverse effects such as hyaline degeneration, focal necrosis and deformation in the kidney, hyperplastic nodules in the liver, decreased hemoglobin and red blood cell counts at higher doses. Only one PBDE congener has been tested for causing cancer, in a single study more than 15 years ago. High doses of deca-BDE given to rats and mice caused liver, thyroid and pancreas tumors.