Hi Ya'll,
Here is some info about pH Specific bacteria:
Biosynthesis, nutrition, and growth of bacteria > Factors affecting bacterial growth > Physical requirements > pH
Most bacteria grow in the range of neutral pH values (between 5 and 8), although some species have adapted to life at more acidic or alkaline extremes. An example of an acidophilic bacterium is T. ferrooxidans. When coal seams are exposed to air through mining operations, the pyritic ferrous sulfide deposits are attacked by T. ferrooxidans to generate sulfuric acid, which lowers the pH to 2.0 or even 0.7. However, acid tolerance of T. ferrooxidans applies only to sulfuric acid, since these bacteria die when exposed to equivalent concentrations of other acids such as hydrochloric acid. Many bacteria cannot tolerate acidic environments, especially under anaerobic conditions, and, as a result, plant polymers degrade slowly in acidic (pH between 3.7 and 5.5) bogs, pine forests, and lakes. In contrast to acidophilic bacteria, alkalophilic bacteria are able to grow in alkaline concentrations as great as pH 10 to 11. Alkalophiles have been isolated from soils, and most are species of the gram-positive genus Bacillus.
And more pH Specific bacteria info:
Researchers develop technique for bacteria crowd control
ARGONNE, Ill. (April 16, 2007) – A surprising technique to concentrate, manipulate and separate a wide class of swimming bacteria has been identified through a collaboration between researchers at the U.S. Department of Energy's Argonne National Laboratory, Illinois Institute of technology, University of Arizona at Tucson and Cambridge University, U.K. This device could have enormous applications in biotechnology and biomedical engineering, including use in miniaturized medical diagnostic kits and bioanalysis.
The technique is based on the transmission of tiny electric current in a very thin film sample cell containing a colony of bacteria. The current produces electrolysis that changes the local pH level in the vicinity of the electrodes. The bacteria, uncomfortable with the changes in pH, swim away from the electrodes and ultimately congregate in the middle of the experimental cell. Concentrated bacteria form self-organized swirls and jets resembling vortices in vigorously stirred fluid.
The method, which is suitable for flagellated bacteria such as E. coli, Bacillus subtilis, among many others, relies on the ability of bacteria to swim toward areas of optimal pH level. The bacteria live in an environment of a specific pH level, so that an increase or decrease of pH stimulates the bacteria to avoid areas of non-comfortable pH and swim in the direction of pH gradient. The researchers used an electric current to create a controlled deviation of the pH levels from the bulk values. Since only living bacteria respond to the pH stimulation, using this method can separate living and dead cells or bacteria with different motility.
The device, capable to change the thickness of a film from 1mm to 1 micron (with accuracy of 5 percent) and control the position of electrodes, is intended to separate and concentrate small quantities of living and dead microorganisms in confined spaces. It can be used for the purposes of express bioanalysis, diagnostic and identification of small bacterial samples, and separation sicken/live cells. A patent for the device is currently pending.
“Using this method, our research succeeded in dramatically increasing the concentration of microorganisms in tiny fluid drops and films. Unlike traditional centrifuging techniques, the new approach allows selective concentration of healthy cells,” said Andrey Sokolov, Ph.D. student from Illinois Institute of Technology and contributor to the research.
In addition to the development of the device used in the experimentation, research findings uncovered the explanation for the long-standing fundamental questions on the properties of collective and organized motion in the systems of interacting self-moving objects. Besides swimming bacteria, other examples include bird flocks, fish schools, motor proteins in living cell, and even swarms of communicating nano-robots.
“We have presented experimental studies of collective bacterial swimming in thin fluid films where the dynamics are essentially two-dimensional and the concentration can be adjusted continuously,” explained Igor Aronson, physicists at Materials Science Division, Argonne National Laboratory. “Our results provide strong evidence for the pure hydrodynamic origin of collective swimming, rather than chemotactic mechanisms of pattern formation when microorganisms just follow gradients of a certain chemical, such as nutrient, oxygen, or other.”
Detailed results of these findings have been published in Physical Review E and in Physical Review Letters.
Funding for this research was provided by the U.S. Department of Energy's Office of Basic Energy Science.
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
For more information, please contact Steve McGregor (630/252-5580 or media@anl.gov) at Argonne.
Answer: As anyone with two bits of "Common Sense" may be able to see, it is the change in pH which causes Different bacteria to come and go in a media !
Thus Sickness and Diseases are Caused by the body becomming too Acidic !
Could it be that those who think Sickness and Disease is what Causes the pH to become too Acidic may have lost what Little "Common Sense" they may have been Born with?????
And what other "False" ideas may they be Deceived with?
Cause and Effect !
"WE" are What "WE" Eat !
Smile Tis your choice.